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Table 1. Storage and drying effects on identification of
rhizobia in soybean nodules by ELISA.

Storage
temperature

Control^
Ambient
5°C
-5°C
-60°C

Control
Ambient
5°C
-5°C
-60°C

Control
Ambient
5°C
-5°C
-60°C

Nondried

52 ± 15
62 ± 11

-
49 ± 17
37 ± 13

48 ± 12
64 ± 15

-
65 ± 13
39 ± 17

35 ± 13
75 ± 14

-
50 ± 7
37 ± 8

Drying method
Air-dried

— ELISA units?
Strain 110

42 ± 9
31 ± 14
50 ± 12

••
Strain 1004

..
37 ± 17
35 ± 12
36 ± 17

-
Strain 587

__
47 ± 11
47 ± 10
53 ± 10

-

Freeze-dried

..
44 ± 5
52 ± 11
54 ± 12
46 ± 13

„
39 ± 16
47 rfc 16
53 ± 18
29 ± 16

32 ± 10
35 ± 7
38 ± S
25 ± 3

LSD,.,,,

10

13

8

t Absorbance values at 410 nm x 100.
i Controls were nodules which were serologically analyzed within 24 h after

removal from the roots.

(LSD), and standard deviation as outlined by Steel and Tor-
rie (1960).

Results and Discussion
Enzyme-linked immunosorbent assay (ELISA) is a

colqrimetric technique for identification of rhizobia.
Positive ELISA reactions are characterized by intense
color development, whereas, negative reactions de-
velop color slowly. Negative reactions (resulting from
the natural degradation of the enyzyme substrate) had
readings of 10 ±4 ELISA units. Data in Table 1 rep-
resent the quantitative measurement of color devel-
opment associated with the various treatments.

Neither of the drying methods nor storage temper-
atures inhibited color development associated with
positive reactions (Table 1). Color development for
all treatment combinations was three- to six-fold
greater than negative reactions. The nondried nodules
stored at ambient temperature were generally more
reactive than the other treatment combinations, how-
ever, this was probably a result of fungal contamina-
tion. In this study, nondried nodules stored at am-
bient temperature were more susceptible to fungal
growth than the other treatment combinations. Means
for the freeze-dried nodules stored at 5°C or —5°C
were consistently similar to the mean of the control.
However, since the other treatment combinations pro-
vided material suitable for ELISA, the similarity be-
tween freeze-dried nodules and the controls would not
justify the expense of purchasing freeze-drying equip-
ment. Additionally, air-dried and freeze-dried nodules
lost pliability and required rehydration for macera-
tion. Suspending nodules in saline solution for about
1 h restored pliability and provided material suitable
for ELISA.

Conclusions
Identification of rhizobia in soybean nodules by

ELISA was not inhibited by drying or by storage at

the various temperatures for an extended period. For
efficient resource management, we prefer freeze-dried
nodules stored in sealed containers at — 5°C. How-
ever, one or more of the alternative procedures may
be more practical in some laboratories, depending on
the number of samples collected and the time, per-
sonnel, and analytical facilities available to conduct
serological analyses.

CALCULATIONS OF ERROR VARIANCES
WITH STANDARDIZED VARIOGRAMS1

A. W. WARRICK AND D. E. MYERS2

Abstract
Sample error calculations are presented for five common vario-

gram models: exponential, spherical, Gaussian (double exponential),
Langmuir (Michaelis-Menton) and linear. Numerical results for
standardized variograms are presented in a 9 X 10 table useful for
finding the maximum estimation (kriging) variance for a rectangular
pattern valid for any spacing, slope, integral scale, etc., for zero
nugget. Results are calculated based on the use of four or twenty-
five nearest neighbors.

Additional Index Words: geostatistics, kriging, variograms, sam-
pling.
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DETERMINATION OF THE PROPER NUMBER of Sam-
ples and the proper site locations is of wide-

spread interest for a variety of sampling problems.
Not only is economy of effort important, but also the
variance of the error associated with whatever scheme
is chosen. Burgess et al. (1981) and McBratney and

1 Support was, in part, by Western Regional Research Project W-
155. Technical Paper 4204, Arizona Agric. Exp. Stn., Tucson, AZ
85721. Received 25 April 1986.2 Professor, Dep. of Soil and Water Science, and Professor, Dep.
of Mathematics, Univ. of Arizona, Tucson 85721.
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Table 1. Variogram models considered.
Model Variogram

1. Exponential
2. Spherical

3. Gaussian
4. Langmuir (Michaelis-Menton)
5. Linear

1 - exp(-HXB)
1.5(H/B) - 0.5(H/B)>, H > B

1 ,H > B
1 - exp(-(H/B)>]

(H/B)/(1 + H/B)
H/B

Webster (1983) considered optimal designs utilizing
regionalized variables. They demonstrated that for an
isotropic system, a square pattern had an estimation
variance (kriging variance) comparable to that for a
triangular pattern of the same sampling density. Their
work clearly relates density of samples to reliability of
estimates at an unmeasured site, more specifically the
variance at the midpoint of the rectangle formed by
four points on a sampling grid.

Our objective here is to calculate error variances
based on standardized variograms. Numerical values
will be given for estimation variances based on com-
mon models, generalized for nuggets, sills, integral
scales, or correlation lengths. The results are presented
in a tabular form which may be read directly to de-
termine the error variance for most settings. Expo-
nential, spherical, Gaussian (double exponential),
Langmuir (Michaelis-Menton), and linear models are
considered.

Theory
Table 1 lists common variogram models. The first four,

the exponential, the spherical, Gaussian (double exponen-
tial), and Langmuir all have a sill of 1 and nugget of zero
and are denned in terms of the ratio H/B, where B is related
to the range or integral scale as appropriate. The "Lang-
muir" equation is of the same form as the Langmuir ad-
sorption isotherm from surface chemistry as well as the Mi-
chaelis-Menton reaction rate from microbiology. The linear
model has no sill. The first four models are appropriate for
second order stationary processes.

Suppose H and B are measured in the grid of unit char-
acteristic length to the right in Fig. 1, but we are interested
in interpolations or predictions with the "real" system to
the left with a characteristic length x0. Without loss of gen-
erality assume the variogram for the real system is

C0 + C
0, h = 0

0
[1]

with h and i measured in the real system and C0 and C, the
nugget and slope. The proper definitions of// and B in terms
of h and ft are

H = h/x0

B = b/x0

[2]
[3]

with xa a scaling length which corresponds to the unit length
in the scaled system. We will consider the system to be is-
otropic for simplicity with calculations assumed to be non-
directional.

The equations for determining the weights for punctual
kriging are (cf. Burgess and Webster, 1980)

- 1, ... N [4]

[5]

• •

• •

• •

• *

• •

• •

• •

(A)

(REAL) (SCALED)

(B)

I*—— XQ —————H

Fig. 1. Regular (A) and irregular (B) sets of location sites and scaled
location sites.

where the sums are over the Appoints used for interpolation,
\j are the weights and yu = y(x, - xj). The M is a Lagrange
multiplier and yio is taken between point "i" and the esti-
mation point.

Substitution of 7 from Eq. [1] into Eq. [4] results in
-CoX, + 2 X,{C0 + Cau,ij(H,B)} + n

= CQ T C)7«

By Eq. 5, an equivalent form is
— r"\ 4- H — r*\^Q/\i i \i ^O/

[6a]+ M/(C0 + CO = (1 - Co) ywo

i = 1 . . . N
where C0 is a relative nugget defined as a fraction of the sill

C5 = C0/(C0 + CO [6b]
A comparison of Eq. [4] and [6] shows immediately the well
known result that the weights X, are unaffected by a multi-
plicative factor C,. For the first four model types of Table
1, the Ct corresponds to the variance if no nugget is present.
For the linear model, C, is the slope.

Also, the Lagrange multiplier (n) follows by comparing
Eq. [4] and [6]:

M = (C0 + C,) M« • [7]
As the kriging variance is a\ = n + 2, Xjyjo, then the rela-
tionship of <TK to the generalized <s\K is

(C0 [8]
where fiu and a\K correspond to the unit system and a2

UiK is
a function of CJJ.

Thus, if we have available X, and a\K for the unit system,
those for the real system easily follow provided

H/B = h/b [9]
which is assured if// and B are scaled by x0, i.e. Eq. [2] and
[3] are satisfied.
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i1"

X

2.

EXPONENTIAL

• 4 PTS
•25 PTS

B
SPHERICAL

• 4 PTS
• 25 PTS

Table 2. Maximum estimation variance for a square grid
spacing of *> for five variogram models. Estimation
variance is presented for 4 and 25 nearest neighbors.

-1. 0. 1.1. -1. 0.
LOG (b/cpacing)

Fig. 2. Maximum standardized estimation variance for exponential
and spherical variograms.

Numerical Results and Examples
Equation [8] can be used to find general values of

kriging variance. For example, consider <s\ and <s\iU
corresponding to Z0 and ZMj0 of the unsampled loca-
tion in Fig. 1A. The center of the unsampled square
within a regular grid has the largest kriging variance
of the interior and is that considered by Burgess et al.
(1981) and McBratney and Webster (1983). If <£„ is
known and Eq. [9] is satisfied, a\ is given by Eq. [8].
With this in mind, Fig. 2 was prepared, based on the
4 or the 25 nearest neighbors and C0 = 0. Part A is
for an exponential model distribution and Part B for
a spherical. In each case the maximum relative vari-
ance (<T2

KiU) is largest for small values ofb/x0 (spacing)
and decreases as b/x0 increases. The small b/x0 cor-
responds to samples outside of the range of influence.
For this case_the best estimate reduces to the classical
result Z* = Z + «, for which the variance estimate is

Var(Z*) = <r2 [10]

with n the number of samples used in the estimate
and ff the population variance. Thus, the limiting rel-
ative variance is 1 + 1/n resulting in 1.25 and 1.04
for 4 and 25 samples, respectively. From a practical
viewpoint the estimation variance need not be more
than the population variance, because for independent
samples, all samples can be used in Eq. [10] reducing
1 + l/« to approximately 1.

If b/x0 is large, the nearest neighbors dominate the
estimate of Z, and the relative variance goes to zero.
A comparison of the results for 4 vs. 25 points reveals
larger kriging variances for 4 points as expected for
any particular b/x0 although differences are insignifi-
cant for larger b/x0.

Results for all the variograms considered are given
in Table 2. The relative variance for Models 1 to 4
range from limiting values of 1 + l/« at b/x0 small
to 0 for b/x0 large. For the B (= b/x0) values as defined
in Table 1, the decrease for Langmuir form is very
gradual, the exponential less so and the Gaussian very
sharp.

Table 3 was prepared for a nonzero nugget and a
spherical model. Maximum estimation variance is
given as a function ofb/x0 using the nearest neighbors
for a spherical model with values of C0 = C0/(C0 +
Ct) as 0, 0.05, 0.1, 0.25, 0.5, and 0.75.

As an example application, consider the estimation
variance for thickness of cover loam at Plas Gogerdon
after Burgess et al. (1981, esp. Fig. 3). The variogram
is assumed isotropic and spherical

Exponential
b/x, 4

0.0 1.25
0.1 1.25
0.2 1.20
0.5 0.85
1.0 0.51
2.0 0.27
5.0 0.11

10.0 0.06
oo 0.00

Table 3.

25

1.04
1.04
1.03
083
0.51
0.27
0.11
0.06
0.00

Spherical
4 25

1.25 1.04
1.25 1.04
1.25 1.04
1.25 1.04
1.02 0.96
0.45 0.42
0.17 0.17
0.08 0.08
0.00 0.00

Gaussian Langmuir
4 25 4

1.25 1.04 1.25
1.25 1.04 1.06
1.25 1.04 0.92
0.99 0.94 0.65
0.25 0.15 0.43
0.03 0.00 0.25
0.00 0.00 0.11
0.00 0.00 0.06
0.00 0.00 0.00

25

1.04
0.95
0.86
0.64
0.43
0.25
0.11
0.05
0.00

Standardized kriging variances using 25
neighbors and

Linear
4 25

00 00

5.61 5.51
2.80 2.76
1.12 1.10
0.56 0.55
0.28 0.28
0.11 0.11
0.06 0.06
0.00 0.00

nearest
a spherical model.

CJIC, + C,|
b/x.
0
0.1
0.2
0.5
1.0
2.0
5.0

10.0
00

0

1.04
1.04
1.04
1.04
0.96
0.42
0.17
0.08
0.00

0.05

1.04
1.04
1.04
1.04
0.96
0.47
0.22
0.14
0.05

0.1 0.25

1.04 1.04
1.04 1.04
1.04 1.04
1.04 1.04
0.97 0.99
0.51 0.65
0.28 0.43
0.20 0.36
0.10 0.25

0.5

1.04
1.04
1.04
1.04
1.01
0.83
0.66
0.60
0.50

0.75

1.04
1.04
1.04
1.04
1.03
0.97
0.87
0.82
0.75

-K/0 = 187 + 604 [1.5(/z/101) - 0.5(/z/101)3],
h < 101 m [11]

= 791, h > 101 m.
For a spacing of x0 = 25 m, we have b/x0 = 101/25
= 4.04. From Table 3 for C0/(C0 + C,) = 0.236, we
read a2

K,v « 0.43. From Eq. [8], a2
K is about

a\ ̂  (187 + 604)(0.43) = 340
which agrees reasonably well with their value. Simi-
larly for xQ = 50 m, we find o2

uK <=a 0.65 and o\ «=<
510.

Values are also given in Table 2 for the linear model.
Of course for the linear model, no sill exists and the
variance is undefined. Thus, as b/x0 becomes small,
a2

K,u increases without bounds. Again we can compare
results with Burgess et al. (1981, esp. Fig. 1). For a
spacing of 2 units and b = 1, a\<u (for b/x0 = 0.5) is
about 1.1 which compares favorably.

Discussion
Numerical results have been presented in tabular

form from which the estimation (kriging) variance may
be read directly. Results are valid for all rectangular
spacings, and as appropriate, for all integral scales,
slopes, range, and sills for the five common variogram
forms of Table 1. The scaling relationships are also
given with respect to weights and for arbitrary sam-
pling patterns. The result for Eq. [8] is valid for an
irregular pattern as shown in Fig. IB as well as for a
regular grid.

Obviously, the reliability of the estimation variance
results depends on the accuracy of the variogram. If
the variogram is uncertain, the results will also be un-
reliable. However, the sensitivity of results as affected
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by changes in the variogram parameters follow from
these results.

ANALYTICAL SOLUTION FOR PUNCTUAL
KRIGING IN ONE DIMENSION1

PARICHEHR HEMYARI AND D. L. NopziGER2

Abstract
The solution to the system of equations required for punctual krig-

ing in one dimension was determined analytically for a linear se-
mivariogram. The solution indicates that kriging in this situation is
identical to linear interpolation between the two closest neighbors.
The kriged values are independent of the coefficients in the linear
semivariogram model. The estimation variance is linearly dependent
upon the coefficients in the model. Although no analytical solution
was obtained for the spherical and exponential semivariance models,
kriged values for these models were found to be essentially the lin-
early interpolated values. These results provide insight into the be-
havior of the kriging estimator. They can be used to save substantial
numerical computation and to guide the user in selecting the neigh-
borhood of points used in one-dimensional kriging.

Additional Index Words: geostatistics, semivariogram, interpo-
lation.
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IN RECENT YEARS, SOIL SCIENTISTS have used the
kriging technique to estimate soil parameters.

Kriging is based on the theory of regionalized varia-
bles developed in the 1960s by Matheron. Gambolati
and Volpi (1979), Burgess and Webster (1980), and
Vieira et al. (1983) discuss the technique and provide
examples of its use. Kriging is a form of weighted av-
eraging in which the weights are chosen such that the
error associated with the estimate is less than for any
other linear sum. The weights are determined by solv-
ing a system of linear equations. The weights depend
upon the location of the points used in the estimation
process and upon the structure of the variance of the
parameter as reflected in the semivariogram. In gen-
eral, the system of equations is solved numerically.
Researchers are frequently interested in the influence
of the number of points used in the estimation process
and of uncertainty in the semivariogram model pa-
rameters upon the kriged values and associated esti-
mation variance. These questions can be answered ex-

1 Contribution from the Dep. of Agron. Oklahoma Agric. Exp.
Stn. Journal Manuscript no. 4930. Received 23 Dec. 1985.2 Research Assistant and Professor, respectively, Dep. of Agron.
Oklahoma State Univ., Stillwater, OK 74078.

plicitly for one-dimensional kriging when the
semivariogram model is linear. Brugess et al. (1981)
provide part of these answers for a one-dimensional
system with uniformly spaced measurements and a
linear semivariogram with no nugget effect.

The objectives of this paper are to present an ana-
lytical solution to the system of equations for kriging
in one dimension for a linear semivariance model, to
determine the sensitivity of the kriged values and the
estimation variances to the parameters in the linear
semivariance model, and to compare the solution for
the linear semivariance model with solutions for the
spherical and exponential models.

Analytical Solution
The estimated value determined by kriging of a parameter

Y at location x is given by
Y*(x) = S£i w/jte) [1]

where y(x,) for i = 1,2, ... , N are measured values of the
parameter and w, is the weight for each measured value. The
estimation variance a2(x) is given by

ti\x) = M + 2fL, wn(xh x) [2]
where y(x,, x) is the semivariance for values separated by
the distance between points x and x/ and n is the Lagrangian
multiplier. Values of w, and /t are obtained from the follow-
ing system of linear equations
2f_, w/y(xh xj) + n = y(xh x); i = 1,2, ... , N; [3]
and

2JL, Wj= 1 . [4]
Equations [3] and [4] define a system of N + I equations
and N + 1 unknowns (w,-, / = 1,2,. . . , N and ju) which are
solved simultaneously. For a linear semivariogram, y(h) =
A + Bh where h is the distance between the points. Equation
[3] then becomes

2ji, WjB\X! - Xj\ + M - B\XI ~ x\. [5]
If the values of x and x/ fall on a straight line the equations
denned by Eq. [4] and [5] can be solved analytically. Solu-
tions are given below for three cases. These solutions assume
the data points are ordered such that xt increases as /' in-
creases.
Case 1

If x < Xi then w, = 1 ;
Wi= Ofor i = 2,3, ... ,N; [6a]
and M = B(XI — x).

Case 2
If xk < x < xk+i for k in the range of I to N then
Wk = (Xk+i ~ X)/(Xk + , - Xk) ;
wk + i = (x - xk)/(xk + , -**) ; [6b]
Wi• = 0 for i < k or / > k + 1;
and M = 0 .

Case 3
If x > XN then WN = 1
w, = 0 for / = 1,2, ... , N - 1; [6c]
and n = B(x — XN) .

These solutions can be verified by substituting them into


